International Electrotechnical Commission

The IEC is the world leader in preparing international standards for all electrical, electronic, and related technologies. A global, not-for-profit membership organisation, the IEC provides a neutral and independent institutional framework to over 170 countries, coordinating the work of more than 20,000 experts. We administer four IEC Conformity Assessment Systems, representing the largest working multilateral agreement based on the one-time testing of products globally. The members of each system certify that devices, systems, installations, services, and people perform as required.

IEC International Standards represent a global consensus of state-of-the-art know-how and expertise. Together with conformity assessment, they are foundational for international trade.

IEC Standards incorporate the needs of many stakeholders in every participating country and form the basis for testing and certification. Every member country and all its stakeholders represented through the IEC National Committees has one vote and a say in what goes into an IEC International Standard.

Our work is used to verify the safety, performance, and interoperability of electric and electronic devices and systems such as mobile phones, refrigerators, office and medical equipment, or electricity generation. It also helps accelerate digitisation, artificial intelligence (AI), or virtual reality applications, protects information technology (IT) and critical infrastructure systems from cyberattacks and increases the safety of people and the environment.

Digital activities 

The IEC works to ensure that its activities have a global reach in order to meet all the challenges of digital transformation worldwide. The organisation covers an array of digital policy issues.

Digital policy issues

Artificial intelligence

AI applications are driving digital transformation across diverse industries, including energy, healthcare, smart manufacturing, transport, and other strategic sectors that rely on IEC Standards and Conformity Assessment Systems. AI technologies allow insights and analytics that go far beyond the capabilities of legacy analytic systems.

For example, the digital transformation of the grid enables increased automation, making it more efficient and able to integrate fluctuating renewable energy sources seamlessly. IEC Standards pave the way for the use of a variety of digital technologies relating to intelligent energy. They deal with issues such as integrating renewable energies within the electrical network but also increased automatisation.

The IEC’s work in the area of AI takes a three-pronged approach. IEC experts focus on sector-specific needs (vertical standards) and conformity assessment, while the joint IEC and International Organization for Standardization (ISO) technical committee on AI, JTC1/SC 42, brings together technology experts, as well as ethicists, lawyers, social scientists, and others to develop generic and foundational standards (horizontal standards).

In addition, IEC Safety Standards are an essential element of the framework for AI applications in power utilities and smart manufacturing. IEC Conformity Assessment Systems complete the process by ensuring the standards are properly implemented.

SC 42 addresses some concerns about the use and application of AI technologies. For example, data quality standards for ML and analytics are crucial for helping to ensure that applied technologies produce useful insights and eliminate faulty features.

Governance standards in AI and the business process framework for big data analytics address how the technologies can be governed and overseen from a management perspective. International standards in the areas of trustworthiness, ethics, and societal concerns will ensure responsible deployment.

The joint IEC and ISO technical committee also develop foundational standards for the IoT. Among other things, SC 41 standards promote interoperability, as well as architecture and a common vocabulary for the IoT.

Cloud computing

The IEC develops standards for many of the technologies that support digital transformation. Sensors, cloud, and edge computing are examples.

Advances in data acquisition systems are driving the growth of big data and AI use cases. The IEC prepares standards relating to semiconductor devices, including sensors.

Sensors can be certified under the IEC Quality Assessment System for Electronic Components (IECQ), one of the four IEC Conformity Assessment Systems.

Cloud computing and its technologies have also supported the increase of AI applications. The joint IEC and ISO technical committee prepares standards for cloud computing, including distributed platforms and edge devices, which are close to users and data collection points. The publications cover key requirements relating to data storage and recovery.

Building trust

International Standards play an important role in increasing trust in AI and help support public and private decision-making, not least because they are developed by a broad range of stakeholders. This helps to ensure that the IEC’s work strikes the right balance between the desire to deploy AI and other new technologies rapidly and the need to study their ethical implications.

The IEC has been working with a wide range of international, regional, and national organisations to develop new ways to bring stakeholders together to address the challenges of AI. These include the Swiss Federal Department of Foreign Affairs (FDFA) and the standards development organisations, ISO, and the International Telecommunication Union (ITU).

More than 500 participants followed the AI with Trust conference, in-person and online, to hear different stakeholder perspectives on the interplay between legislation, standards and conformity assessment. They followed use-case sessions on healthcare, sensor technology, and collaborative robots, and heard distinguished experts exchange ideas on how they could interoperate more efficiently to build trust in AI. The conference in Geneva was the first milestone of the AI with Trust initiative.

The IEC is also a founding member of the Open Community for Ethics in Autonomous and Intelligent Systems (OCEANIS). OCEANIS brings together standardisation organisations from around the world to enhance awareness of the role of standards in facilitating innovation and addressing issues related to ethics and values.

Read more

Network security and critical infrastructure

The IEC develops cybersecurity standards and conformity assessments for IT and operational technology (OT). One of the biggest challenges today is that cybersecurity is often understood only in terms of IT, which leaves critical infrastructure, such as power utilities, transport systems, manufacturing plants and hospitals, vulnerable to cyberattacks.

Cyberattacks on IT and OT systems often have different consequences. The effects of cyberattacks on IT are generally economical, while cyberattacks on critical infrastructure can impact the environment, damage equipment, or even threaten public health and lives.

When implementing a cybersecurity strategy, it is essential to consider the different priorities of cyber-physical and IT systems. The IEC provides relevant and specific guidance via two of the world’s best-known cybersecurity standards: IEC 62443 for cyber-physical systems and ISO/IEC 27001 for IT systems.

Both take a risk-based approach to cybersecurity, which is based on the concept that it is neither efficient nor sustainable to try to protect all assets in equal measure. Instead, users must identify what is most valuable and requires the greatest protection and identify vulnerabilities.

Conformity assessment provides further security by ensuring that the standards are implemented correctly: IECEE certification for IEC 62443 and IECQ for ISO/IEC 27001.

ISO/IEC 27001 for IT

IT security focuses equally on protecting the confidentiality, integrity, and availability of data – the so-called CIA triad. Confidentiality is of paramount importance and information security management systems, such as the one described in ISO/IEC 27001, are designed to protect sensitive data, such as personally identifiable information (PII), intellectual property (IP), or credit card numbers, for example.

Implementing the information security management system (ISMS) described in ISO/IEC 27001 means embedding information security continuity in business continuity management systems. Organisations are shown how to plan and monitor the use of resources to identify attacks earlier and take steps more quickly to mitigate the initial impact.

IEC 62443 for OT

In cyber-physical systems, where IT and OT converge, the goal is to protect safety, integrity, availability, and confidentiality (SIAC). Industrial control and automation systems (ICAS) run in a loop to check continually that everything is functioning correctly.

The IEC 62443 series was developed because IT cybersecurity measures are not always appropriate for ICAS. ICAS are found in an ever-expanding range of domains and industries, including critical infrastructure, such as energy generation, water management, and the healthcare sector.

ICAS must run continuously to check that each component in an operational system is functioning correctly. Compared to IT systems, they have different performance and availability requirements and equipment lifetime.

Conformity assessment: IECEE

Many organisations are applying for the IEC System of Conformity Assessment Schemes for Electrotechnical Equipment and Components (IECEE) conformity assessment certification to verify that the requirements of IEC 62443 have been met.

IECEE provides a framework for assessments in line with IEC 62443, which specifies requirements for security capabilities, whether technical (security mechanisms) or process (human procedures) related. Successful recipients receive the IECEE industrial cybersecurity capability certificate of conformity.

Conformity assessment: IECQ

While certification to ISO/IEC 27001 has existed since the standard was published in 2013, it is only in recent years that the IEC Quality Assessment System for Electronic Components (IECQ) has set up a true single standardised way of assessing and certifying an ISMS to ISO/IEC 27001.

International standards such as IEC 62443 and ISO/IEC 27001 are based on industry best practices and reached by consensus. Conformity assessment confirms that they have been implemented correctly to ensure a safe and secure digital society.

Read more

Video

Digital tools

IEC has developed a number of online tools and services designed to help everyone with their daily activities.

Social media channels

Facebook @InternationalElectrotechnicalCommission

LinkedIn @IECStandards

Pinterest @IECStandards

X @IECStandards

YouTube @IECstandards

Geneva Science-Policy Interface

The GSPI is a neutral and independent platform that aims to foster engagement between the research community and Geneva-based international policy actors around some of the most pressing global challenges (including global health, climate change, and migration). 

It works to foster science-policy ecosystems by brokering collaborations and enhancing capacities across the interface between the science, policy, and implementation communities. This includes an annual call for projects, the Impact Collaboration Programme (ICP), the production of policy briefs, as well as learning opportunities and resources to advance the professionalisation and recognition of the science-policy field of practice in Geneva and beyond.

The GSPI is based at the University of Geneva. It receives support from the Swiss Federal Department of Foreign Affairs (FDFA) and the backing of leading research institutions in Switzerland and Europe.

Digital activities

As part of its activities at the interplay between science, policy, and implementation actors, the GSPI tackles a range of digital issues. With data being a centrepiece of evidence-based policies, many of the GSPI’s activities touch on digitalisation and the use of digital tools in domains such as health, migration, development, and the environment.

Digital policy issues

Artificial intelligence

The project MapMaker, a collaboration between the International Union for Conservation of Nature (IUCN) and the Swiss Federal Institute of Technology in Zürich (ETH Zurich) has enabled the development of an online visualisation tool to inform data-driven decision-making on marine biodiversity conservation at the international level.

Digital standards

Together with the Geneva Health Forum (GHF), the GSPI has established a working group including key humanitarian actors to harness knowledge and best practices around the digitisation of clinical guidelines for management of childhood illness in primary care in low and middle-income countries. In line with the efforts of the WHO, and the principles of donor alignment for digital health, the working group has developed recommendations on how digitalisation can improve the management of childhood illness. In September 2021, the results of this work were shared with experts and the public, providing a platform for discussions on the lessons learned and future trends in the field.

Emerging technologies

In 2018, the GSPI organised policy discussions on the use of drones as part of humanitarian action. The conversation centred on the practical use of drones to deliver humanitarian aid and what can be done by stakeholders such as policymakers, the private sector, and non-governmental organisations (NGOs) to maximise the opportunities and reduce the risks of such technologies.

At the 2019 Digital Day, together with the University of Geneva, the GSPI organised a discussion exploring what experience and know-how Geneva-based organisations could share to empower and protect users in the context of the digital revolution.

With a number of other partners, the GSPI co-organised a discussion at the 2019 WSIS Forum on aerial data produced by drones and satellites in the context of aid and development. The session explored the interplay between international organisations, NGOs, and scientists and how they can work together to help monitor refugee settlements, provide emergency response in case of natural disasters, and scale agriculture programmes.

Data governance

The project REDEHOPE of the University of Geneva and the UN Economic Commission for Europe (UNECE) has led to the development of an online diagnostic tool to help countries identify and visualise issues in their housing data ecology, and access appropriate datasets to formulate more robust, evidence-based housing policies at the country level.

Sustainable development

In 2020–2021, the Basel, Rotterdam and Stockholm Convention (BRS) secretariat benefitted from the support of ETH Zurich to develop an online platform to identify and signal the need for evidence and information to the scientific community in the field of chemical and waste management.

A project from ICP 2021 addressed the hurdles facing policy actors in accessing and making sense of data in migration research. The project partners (the International Organization for Migration (IOM) and the Graduate Institute) developed an interactive digital toolkit for policy officials to support them in leveraging migration research for evidence-based policymaking. The toolkit, based on IOM’s flagship publication, the World Migration Report, was launched in June 2022.

ICP 2021 brought support to the development of interactive analytical tools providing information about all UN sanctions to inform both humanitarian practitioners and sanction policy actors on practical ways to safeguard principled humanitarian action in areas under a sanction regime. This project is a collaboration between the Graduate Institute and the Norwegian Refugee Council (NRC).

ICP 2022 selected a collaboration between ETH Zurich and IOM that seeks to bring more effective policy expertise in the management of migration to address migrants’ needs and increase social cohesion between migrant and local communities. The collaboration will develop a toolbox to be used by IOM and its partners to facilitate the use of the Immigration Policy Lab (IPL) Integration Index, a survey tool for governments, nonprofits, and researchers to measure the integration of immigrants around the world.

Human rights principles

Also in the framework of its ICP, the GSPI has supported a collaboration between the Geneva Academy of International Humanitarian Law and Human Rights and OHCHR’s B-Tech project. Some of the new fast-evolving technologies, such as cloud computing, artificial intelligence (AI), facial recognition technologies, and the internet of things (IoT), can have profoundly disrupting effects on sociopolitical systems and pose significant human rights challenges. This initiative provides authoritative guidance and resources for implementing the UNGPs in the technology space and placing international human rights law (IHRL) at the centre of regulatory and policy frameworks. Aimed at policymakers, the technology sector, and all those working on the regulation of AI, the policy research carried out in this project (see resulting Working Paper, 2021) brings fresh insights into how current initiatives on the regulation of AI technologies could incorporate the protection and respect for human rights. Published by the Geneva Academy, the paper also calls on states to adopt a ‘smart mix’ of mandatory and voluntary measures to support their implementation and how this applies to the AI sector. This GSPI-supported science-policy process will formally feed the development of a ‘UN Guiding Principles check’ tool (working title), which will provide states with a roadmap to assess their regulatory efforts across different policy domains relevant to technology.

Social media channels

LinkedIn @genevaspi

Twitter @GenevaSPI

European Organization for Nuclear Research

CERN is widely recognised as one of the world’s leading laboratories for particle physics. At CERN, physicists and engineers probe the fundamental structure of the universe. To do this, they use the world’s largest and most complex scientific instruments – particle accelerators and detectors. Technologies developed at CERN go on to have a significant impact through their applications in wider society.

Digital activities

CERN has had an important role in the history of computing and networks. The World Wide Web (WWW) was invented at CERN by Sir Tim Berners-Lee. The web was originally conceived and developed to meet the demand for automated information-sharing between scientists at universities and institutes around the world.

Grid computing was also developed at CERN with partners and thanks to funding from the European Commission. The organisation also carries out activities in the areas of cybersecurity, big data, machine learning (ML), artificial intelligence (AI), data preservation, and quantum technology.

Digital policy issues

Artificial intelligence

AI-related projects are developed and referred to as part of the CERN openlab activities.

Through CERN openlab, CERN collaborates with leading information and communications technology (ICT) companies and research institutes. The R&D projects carried out through CERN openlab address topics related to data acquisition, computing platforms, data storage architectures, computer provisioning and management, networks and communication, ML and data analytics, and quantum technologies. CERN researchers use ML techniques as part of their efforts to maximise the potential for discovery and optimise resource usage. ML is used, for instance, to improve the performance of the Large Hadron Collider (LHC) experiments in areas such as particle detection and managing computing resources. Going one step further, at the intersection of AI and quantum computing, CERN openlab is exploring the feasibility of using quantum algorithms to track the particles produced by collisions in the LHC, and is working on developing quantum algorithms to help optimise how data is distributed for storage in the Worldwide LHC Computing Grid (WLCG). This research is part of the CERN Quantum Technology Initiative (QTI) activities, launched in 2020 to shape CERN’s role in the next quantum revolution.

–   CERN openlab: a public-private partnership in which CERN collaborates with ICT companies and other research organisations to accelerate the development of cutting-edge solutions for the research community, including ML.

CERN QTI: a comprehensive R&D, academic, and knowledge-sharing initiative to exploit quantum advantage for high-energy physics and beyond. Given CERN’s increasing ITC and computing demands, as well as the significant national and international interests in quantum-technology activities, it aims to provide dedicated mechanisms for the exchange of both knowledge and innovation.

Cloud computing

Within its work, CERN refers to ‘cloud computing’ as ‘distributed computing.

The scale and complexity of data from the LHC, the world’s largest particle accelerator, is unprecedented. This data needs to be stored, easily retrieved, and analysed by physicists worldwide. This requires massive storage facilities, global networking, immense computing power, and funding. CERN did not initially have the computing or financial resources to crunch all of the data on-site, so in 2002 it turned to grid computing to share the burden with computer centres around the world. The WLCG builds on the ideas of grid technology initially proposed in 1999 by Ian Foster and Carl Kesselman. The WLCG relies on a distributed computing infrastructure, as data from the collisions of protons or heavy ions are distributed via the internet for processing at data centres worldwide. This approach of using virtual machines is based on the same paradigm as cloud computing. It is expected that further CERN developments in the field of data processing will continue to influence digital technologies.

Telecommunication infrastructure

Within its work, CERN refers to ‘telecommunication infrastructure’ as ‘network infrastructure’.

In the 1970s, CERN developed CERNET, a lab-wide network to access mainframe computers in its data centre. This pioneering network eventually led CERN to become an early European adopter of Transmission Control Protocol/Internet Protocol (TCP/IP) for use in connecting systems on site. In 1989, CERN opened its first external TCP/IP connections and by 1990, CERN had become the largest internet site in Europe and was ready to host the first WWW server. Nowadays, in addition to the WLCG and its distributed computing infrastructure, CERN is also the host of the CERN Internet eXchange Point (CIXP), which optimises CERN’s internet connectivity and is also open to interested internet service providers (ISPs).

Digital standards

Within its work, CERN addresses ‘web standards’ as ‘open science’.

Ever since releasing the World Wide Web software under an open-source model in 1994, CERN has been a pioneer in the open-source field, supporting open-source hardware (with the CERN Open Hardware Licence), open access (with the Sponsoring Consortium for Open Access Publishing in Particle Physics SCOAP3) and open data (with the CERN Open Data Portal). Several CERN technologies are being developed with open science in mind, such as Indico, InvenioRDM, REANA, and Zenodo. Open-source software, such as CERNBox, CERN Tape Archive (CTA), EOS, File Transfer Service (FTS), GeantIV, ROOT, RUCIO, and service for web-based analysis (SWAN), has been developed to handle, distribute, and analyse the huge volumes of data generated by the LHC experiments and are also made available to the wider society.

Digital tools

Data governance

Within its work, CERN refers to ‘data governance’ as ‘data preservation’.

CERN manages vast amounts of data; not only scientific data, but also data in more common formats such as webpages, images and videos, documents, and more. For instance, the CERN Data Centre processes on average one petabyte (one million gigabytes) of data per day. As such, the organisation notes that it faces the challenge of preserving its digital memory. CERN also points to the fact that many of the tools that are used to preserve data generated by the LHC and other scientific projects are also suitable for preserving other types of data and are made available to wider society.

The CERN Open Data Policy for scientific experiments at the LHC is essential to make scientific research more reproducible, accessible, and collaborative. It reflects values that have been enshrined in the CERN Convention for more than 60 years that were reaffirmed in the European Strategy for Particle Physics (2020), and aims to empower the LHC experiments to adopt a consistent approach towards the openness and preservation of experimental data (applying FAIR standards to better share and reuse data).

EOSC Future is an EU-funded project that is contributing to establishing the European Open Science Cloud (EOSC) to provide a Web of FAIR Data and Services for science in Europe. The implementation of EOSC is based on the long-term process of alignment and coordination pursued by the Commission since 2015.

CERN joined the recently formed EOSC Association in 2020. The EOSC Association is the legal entity established to govern the EOSC and has since grown to more than 250 members and observers.

Social media channels

Facebook @cern

Instagram @cern

LinkedIn @cern

X @CERN

YouTube @CERN




European Broadcasting Union

EBU is the world’s leading alliance of public service media. It has 112 member organisations in 56 countries and an additional 30 associates in Asia, Africa, Australasia, and the Americas. EBU members operate nearly 2,000 television, radio, and online channels and services, and offer a wealth of content across other platforms.

Together they reach an audience of more than one billion people around the world, broadcasting in more than 153 languages. The EBU operates Eurovision and Euroradio services.

Digital policy issues

Artificial intelligence

AI and data are central themes for PSM today, especially when it comes to strengthening and personalising relationships with its citizens. The EBU’s AI and Data Group defines the AI and Data Initiative strategy and priorities in order to support EBU members’ data usage and AI- and data-driven strategies. It brings together EBU member delegates and EBU permanent services delegates, who are directly involved in carrying out strategic, managerial, analytical, technological, legal, content-related, or other types of activities related to data usage in their respective organisations.

A prominent example of the EBU’s use of AI is its PEACH (Personalization for EACH) initiative, which has brought together a number of public broadcasters to develop AI-powered tools to deliver the right content to the right audience in accordance with current data protection regulations.

Telecommunication infrastructure

EBU members use various types of network infrastructure for the production and distribution of PSM content and services to the entire population. In addition to traditional broadcasting networks – terrestrial, cable, or satellite – media service providers use fixed and wireless IP networks. The EBU’s activities aim to ensure that these networks are capable of meeting the requirements of PSM organisations and their audiences in a technically and economically viable way. This includes technical developments and standardisation in collaboration with industry partners as well as engagement with regulators and policymakers to ensure a suitable regulatory framework for PSM content and services.

The current focus is on broadband distribution infrastructure; distribution over internet platforms; wireless mobile technologies such as 5G; and terrestrial broadcast networks, including access to spectrum.

The governance of the EBU’s technical work is described here: https://tech.ebu.ch/about. The current Technical Committee Workplan (2022-2025) is available here: https://tech.ebu.ch/docs/workplan/EBU_TC_Strategic_Priorities_2022-2025.pdf

Further information about the EBU’s technical work, including the scope of different working groups, can be found at https://tech.ebu.ch/home/

Following the start of the war in Ukraine and the 2021 flooding in Europe, the EBU issued a recommendation to recall the crucial importance of PSM’s delivery to citizens – for this, no single resilient network will suffice.

Digital standards

Since its inception in 1950, the EBU has been mandated by its members to contribute to standardisation work in all technological fields related to media. This work ranges from TV and radio production equipment to the new broadcasting standards for transmission. This mandate has been naturally extended over the years to the field of mobile technologies, as well as online production and distribution.

The EBU hosts the digital video broadcasting (DVB) project, which has developed digital TV standards such as DVB-T/T2 and DVB-S/S2 which are the backbone of digital TV broadcasting around the world. DVB is currently working on an IP-based distribution system and on DVB-I, a new open standard for content distribution over the internet. This work is closely aligned with the 3rd Generation Partnership Project (3GPP).

The EBU is an active member of a number of other standards and industry organisations that are developing specifications relevant to media content production and distribution, including major standards developing organisations (SDOs) (e.g. the European Telecommunications Standards Institute (ETSI), 3GPP, the International Telecommunication Union (ITU), the Institute of Electrical and Electronics Engineers (IEEE) but also those with a more focused scope (e.g. Hybrid broadcast broadband TV (HbbTV), DASH Industry Forum (DASH- IF), the World Wide Web Consortium (W3C), RadioDNS1RadioDNS is an organisation that promotes the use of open technology standards to enable hybrid radio. Hybrid radio combines broadcast radio and internet technologies to create a harmonised distribution technology. It relies upon the Domain Name System (DNS)., Word Digital Audio Broadcasting (WorldDAB), Advanced Encryption Standard (AES), the Advanced Media Workflow Association (AMWA), and the Society of Motion Picture and Television Engineers (SMPTE)). In all these organisations, the EBU’s main objective is to ensure that specifications are capable of meeting the requirements of EBU members and their audiences.

In 2019, the EBU launched a 5G Media Action Group (5G-MAG), an independent non-profit cross-industry association that provides a framework for collaboration between media and information and communications technology (ICT) stakeholders on a market-driven implementation of 5G technologies in content creation, production, distribution, and consumption.

Network neutrality

The EBU’s work in the field of net neutrality focuses on assisting its members in coordinating their positions on broadband network neutrality. To this end, it provides expertise and facilitates initiatives and the drafting of documents concerning net neutrality at the EU level. The EBU also encourages its members to exchange experiences from the national level. Net neutrality is addressed as part of the EBU’s Legal and Policy Distribution Group. Net neutrality is seen as a key principle for public service broadcasters to support and advocate for, as it ensures their services are equally accessible by all internet users.

Cybercrime and network security

The EBU has developed a Strategic Programme on Media Cyber Security, aimed mainly at raising awareness among its members of the increasing cybersecurity risks and threats to broadcasting. This initiative also provides a platform for its members to exchange information on security incidents (e.g. phishing campaigns, targeted malware attacks), as well as on lessons learned, projects, and internal procedures. A dedicated working group is focused on defining information security best practices for broadcast companies – it has recently published a recommendation providing guidance on cybersecurity safeguards that media organisations and media vendors should apply when planning, designing, or sourcing their products and services. The EBU organises an annual Media Cybersecurity Forum, which brings together manufacturers, service providers, and media companies to discuss security issues in the media domain.

Convergence and OTT

In an environment increasingly characterised by digital convergence, the EBU is working on identifying viable investment solutions for over-the-top (OTT) services. The organisation has a Digital Media Steering Committee, focused on ‘defining the role of public service media in the digital era, with a special focus on how to interact with big digital companies’. It also develops a  bi-annual roadmap for technology and innovation activities and has a dedicated Project Group on OTT services.

In addition, there is an intersectoral group composed of EBU members and staff that exchange best practices for relations between internet platforms and broadcasters. During the COVID-19 crisis, a coordinated effort by the technical distribution experts of the EBU and its members monitored the state of the global broadband network to help avoid surcharges due to the increased consumption of on-demand programmes.

This work goes hand in hand with that developed by the Legal and Policy department – among others with the Content, Platform, Distribution, and Intellectual Property Expert Groups, all key in the establishment of EU rules enabling the proper availability of PSM services to people across the EU and beyond.

Capacity development

Most of the EBU’s activities are aimed at increasing the capacity of its members to address challenges and embrace opportunities brought about by the digital age. To that end, through its Digital Transformation Initiative, the EBU has developed a number of member support services, such as its expert community network that gathers over 200 experts from across its membership, and a digital knowledge hub with a repository of analyses and best practices. The EBU also offers a wide range of workshops and other sessions aimed at creating awareness about the digital transformation of the public service media, developing peer-to-peer assessment of members’ digital maturity, and initiating tailored interventions based on members’ needs.

Social media channels

Facebook @EBU.HQ

Instagram @ebu_hq

LinkedIn @ebu

Podcasts @ebu.ch/podcasts

X @EBU_HQ

YouTube @European Broadcasting Union


Ecma International

Ecma International is a global standards development organisation dedicated to the standardisation of information and communication systems. Established in 1961, Ecma has been a pioneer in providing a framework for the collaboration of standardisation and open source. The work is driven by Ecma members to address market requirements, providing a healthy competitive environment where competition is based on the differentiation of products and services, and where vendors and users can rely on the interoperability of technical solutions.

Areas of work include the development and publication of Standards and Technical Reports for information and communications technology (ICT) and consumer electronics (CE), with a broad scope of standardisation topics including hardware, software, communications, consumer electronics, Internet of Things (IoT), programming languages, media storage, and environmental subjects. Ecma’s pragmatic, flexible, member-driven model is effective at enabling technical committees to form and iterate rapidly on internationally recognised open standards.

Digital activities

For over 60 years, Ecma has actively contributed to worldwide standardisation in information technology and telecommunications. More than 400 Ecma Standards and 100 Technical Reports of high quality have been published, covering areas such as data presentation and communication, data interchange and archiving, access systems and interconnection and multimedia, programming languages, and software engineering and interfaces, two-thirds of which have also been adopted as International Standards and/or Technical Reports.

One of the first programming languages developed by Ecma, FORTRAN, was approved in 1965. ECMAScript® (JavaScript), with several billion implementations, is one of the most used standards worldwide.

Digital policy issues

Digital standards

A large part of Ecma’s activity is dedicated to defining standards and technical reports for ICTs (hardware, software, communications, media storage, etc.). This work is carried out through technical committees and task groups focusing on issues such as information storage, multimedia coding and communications, programming languages, open XML formats, and product-related environmental attributes. Our members are committed to Ecma’s success and progress and follow best practices and efficient processes for the development and approval of standards, making Ecma a respected and trusted industry association. Ecma has close working relations – such as liaisons, cooperation agreements, and memberships – with European and international standardisation bodies as well as with some forums and consortia. Our long-established relationships with other standardisation organisations are well maintained and enable us to publish our specifications as international standards.

Telecommunications infrastructure

Network security

Sustainable development/Digital and environment

Programming languages such as ECMAScript (JavaScript) and C#

Data-related standards

Technical committees (TCs) and task groups (TGs) covering issues such as access systems and information exchange between systems (TC51), information storage (TC31), product-related environmental attributes (TC38), ECMAScript® language (TC39), office open XML formats (TC45), and ECMAScript® modules for embedded systems (TC53). The list of Ecma standards is noted above.

Future of standards

The participation in Ecma of many worldwide leading companies ensures not only the acceptance of Ecma Standards in European and international standardisation, but also their worldwide implementation.

Ecma’s goal for the next decade is to continue to play a key role in the extraordinary development of IT, telecommunications and consumer electronics, via the dissemination of new technologies, and by the delivery of first-class standards to our members, partners, and the standard-user community. Ecma aims to continue to bring in major contributions, move technology from members to mature standards, and collaborate with the world’s major standards developing organisations (SDOs).

Digital tools

Conferencing technologies

Ecma maintains a pragmatic approach to meeting participation. Our General Assembly typically takes place as a physical meeting to allow in-person discussions and interaction among members. For members who cannot participate in person, remote attendance is possible with videoconferencing and other digital tools.

Ecma’s technical committees hold either physical, hybrid, or virtual meetings depending on their specific needs.

Ecma meetings are typically held outside of Ecma’s HQ. As a general principle, members are encouraged to host meetings.  Invitations are by a technical committee member who host the meeting at a facility of their choice.

For meetings, consensus building, and voting, Ecma focuses on being efficient and effective. The meeting place and mode are decided upon by the committee.

Social media channels

LinkedIn @ecma-international

X @EcmaIntl