MIT researchers boost quantum computing speed

The breakthrough allows more quantum operations within the limited lifespan of qubits.

MIT, Quantum computing, Development, Research

Researchers at MIT have achieved a significant milestone in quantum computing by demonstrating what they say is the strongest nonlinear light-matter coupling ever recorded.

Using a novel superconducting circuit architecture, the team developed a ‘quarton coupler’ that could dramatically boost the speed of quantum operations, making it possible to run processors about ten times faster than previous systems.

The coupler enables far stronger interactions between photons and artificial atoms—key components of quantum systems—which in turn allows for much faster and more accurate measurements of quantum data.

These improvements are crucial for increasing the number of error-correction rounds that can be completed before qubits lose their coherence, a major limitation in current quantum technology.

Faster readout could therefore pave the way toward fault-tolerant quantum computing, where large-scale real-world applications become possible.

Although the technology is not yet ready for commercial deployment, the research team sees this experiment as an essential foundation.

The architecture could eventually be adapted into more complex quantum processors with built-in readout circuits, allowing scientists to perform quantum computations at greater speed and precision.

The work was supported by the Army Research Office, the AWS Center for Quantum Computing, and MIT’s Center for Quantum Engineering.

Would you like to learn more about AI, tech and digital diplomacy? If so, ask our Diplo chatbot!